home *** CD-ROM | disk | FTP | other *** search
/ Amiga Tools 4 / Amiga Tools 4.iso / grafix / tools / jpeg / jpeg-6a / jidctint.c < prev    next >
C/C++ Source or Header  |  1996-01-06  |  15KB  |  389 lines

  1. /*
  2.  * jidctint.c
  3.  *
  4.  * Copyright (C) 1991-1996, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains a slow-but-accurate integer implementation of the
  9.  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
  10.  * must also perform dequantization of the input coefficients.
  11.  *
  12.  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
  13.  * on each row (or vice versa, but it's more convenient to emit a row at
  14.  * a time).  Direct algorithms are also available, but they are much more
  15.  * complex and seem not to be any faster when reduced to code.
  16.  *
  17.  * This implementation is based on an algorithm described in
  18.  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  19.  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  20.  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  21.  * The primary algorithm described there uses 11 multiplies and 29 adds.
  22.  * We use their alternate method with 12 multiplies and 32 adds.
  23.  * The advantage of this method is that no data path contains more than one
  24.  * multiplication; this allows a very simple and accurate implementation in
  25.  * scaled fixed-point arithmetic, with a minimal number of shifts.
  26.  */
  27.  
  28. #define JPEG_INTERNALS
  29. #include "jinclude.h"
  30. #include "jpeglib.h"
  31. #include "jdct.h"        /* Private declarations for DCT subsystem */
  32.  
  33. #ifdef DCT_ISLOW_SUPPORTED
  34.  
  35.  
  36. /*
  37.  * This module is specialized to the case DCTSIZE = 8.
  38.  */
  39.  
  40. #if DCTSIZE != 8
  41.   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  42. #endif
  43.  
  44.  
  45. /*
  46.  * The poop on this scaling stuff is as follows:
  47.  *
  48.  * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
  49.  * larger than the true IDCT outputs.  The final outputs are therefore
  50.  * a factor of N larger than desired; since N=8 this can be cured by
  51.  * a simple right shift at the end of the algorithm.  The advantage of
  52.  * this arrangement is that we save two multiplications per 1-D IDCT,
  53.  * because the y0 and y4 inputs need not be divided by sqrt(N).
  54.  *
  55.  * We have to do addition and subtraction of the integer inputs, which
  56.  * is no problem, and multiplication by fractional constants, which is
  57.  * a problem to do in integer arithmetic.  We multiply all the constants
  58.  * by CONST_SCALE and convert them to integer constants (thus retaining
  59.  * CONST_BITS bits of precision in the constants).  After doing a
  60.  * multiplication we have to divide the product by CONST_SCALE, with proper
  61.  * rounding, to produce the correct output.  This division can be done
  62.  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
  63.  * as long as possible so that partial sums can be added together with
  64.  * full fractional precision.
  65.  *
  66.  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  67.  * they are represented to better-than-integral precision.  These outputs
  68.  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  69.  * with the recommended scaling.  (To scale up 12-bit sample data further, an
  70.  * intermediate INT32 array would be needed.)
  71.  *
  72.  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  73.  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
  74.  * shows that the values given below are the most effective.
  75.  */
  76.  
  77. #if BITS_IN_JSAMPLE == 8
  78. #define CONST_BITS  13
  79. #define PASS1_BITS  2
  80. #else
  81. #define CONST_BITS  13
  82. #define PASS1_BITS  1        /* lose a little precision to avoid overflow */
  83. #endif
  84.  
  85. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  86.  * causing a lot of useless floating-point operations at run time.
  87.  * To get around this we use the following pre-calculated constants.
  88.  * If you change CONST_BITS you may want to add appropriate values.
  89.  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  90.  */
  91.  
  92. #if CONST_BITS == 13
  93. #define FIX_0_298631336  ((INT32)  2446)    /* FIX(0.298631336) */
  94. #define FIX_0_390180644  ((INT32)  3196)    /* FIX(0.390180644) */
  95. #define FIX_0_541196100  ((INT32)  4433)    /* FIX(0.541196100) */
  96. #define FIX_0_765366865  ((INT32)  6270)    /* FIX(0.765366865) */
  97. #define FIX_0_899976223  ((INT32)  7373)    /* FIX(0.899976223) */
  98. #define FIX_1_175875602  ((INT32)  9633)    /* FIX(1.175875602) */
  99. #define FIX_1_501321110  ((INT32)  12299)    /* FIX(1.501321110) */
  100. #define FIX_1_847759065  ((INT32)  15137)    /* FIX(1.847759065) */
  101. #define FIX_1_961570560  ((INT32)  16069)    /* FIX(1.961570560) */
  102. #define FIX_2_053119869  ((INT32)  16819)    /* FIX(2.053119869) */
  103. #define FIX_2_562915447  ((INT32)  20995)    /* FIX(2.562915447) */
  104. #define FIX_3_072711026  ((INT32)  25172)    /* FIX(3.072711026) */
  105. #else
  106. #define FIX_0_298631336  FIX(0.298631336)
  107. #define FIX_0_390180644  FIX(0.390180644)
  108. #define FIX_0_541196100  FIX(0.541196100)
  109. #define FIX_0_765366865  FIX(0.765366865)
  110. #define FIX_0_899976223  FIX(0.899976223)
  111. #define FIX_1_175875602  FIX(1.175875602)
  112. #define FIX_1_501321110  FIX(1.501321110)
  113. #define FIX_1_847759065  FIX(1.847759065)
  114. #define FIX_1_961570560  FIX(1.961570560)
  115. #define FIX_2_053119869  FIX(2.053119869)
  116. #define FIX_2_562915447  FIX(2.562915447)
  117. #define FIX_3_072711026  FIX(3.072711026)
  118. #endif
  119.  
  120.  
  121. /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
  122.  * For 8-bit samples with the recommended scaling, all the variable
  123.  * and constant values involved are no more than 16 bits wide, so a
  124.  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
  125.  * For 12-bit samples, a full 32-bit multiplication will be needed.
  126.  */
  127.  
  128. #if BITS_IN_JSAMPLE == 8
  129. #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
  130. #else
  131. #define MULTIPLY(var,const)  ((var) * (const))
  132. #endif
  133.  
  134.  
  135. /* Dequantize a coefficient by multiplying it by the multiplier-table
  136.  * entry; produce an int result.  In this module, both inputs and result
  137.  * are 16 bits or less, so either int or short multiply will work.
  138.  */
  139.  
  140. #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
  141.  
  142.  
  143. /*
  144.  * Perform dequantization and inverse DCT on one block of coefficients.
  145.  */
  146.  
  147. GLOBAL(void)
  148. jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  149.          JCOEFPTR coef_block,
  150.          JSAMPARRAY output_buf, JDIMENSION output_col)
  151. {
  152.   INT32 tmp0, tmp1, tmp2, tmp3;
  153.   INT32 tmp10, tmp11, tmp12, tmp13;
  154.   INT32 z1, z2, z3, z4, z5;
  155.   JCOEFPTR inptr;
  156.   ISLOW_MULT_TYPE * quantptr;
  157.   int * wsptr;
  158.   JSAMPROW outptr;
  159.   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  160.   int ctr;
  161.   int workspace[DCTSIZE2];    /* buffers data between passes */
  162.   SHIFT_TEMPS
  163.  
  164.   /* Pass 1: process columns from input, store into work array. */
  165.   /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  166.   /* furthermore, we scale the results by 2**PASS1_BITS. */
  167.  
  168.   inptr = coef_block;
  169.   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  170.   wsptr = workspace;
  171.   for (ctr = DCTSIZE; ctr > 0; ctr--) {
  172.     /* Due to quantization, we will usually find that many of the input
  173.      * coefficients are zero, especially the AC terms.  We can exploit this
  174.      * by short-circuiting the IDCT calculation for any column in which all
  175.      * the AC terms are zero.  In that case each output is equal to the
  176.      * DC coefficient (with scale factor as needed).
  177.      * With typical images and quantization tables, half or more of the
  178.      * column DCT calculations can be simplified this way.
  179.      */
  180.     
  181.     if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
  182.      inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
  183.      inptr[DCTSIZE*7]) == 0) {
  184.       /* AC terms all zero */
  185.       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
  186.       
  187.       wsptr[DCTSIZE*0] = dcval;
  188.       wsptr[DCTSIZE*1] = dcval;
  189.       wsptr[DCTSIZE*2] = dcval;
  190.       wsptr[DCTSIZE*3] = dcval;
  191.       wsptr[DCTSIZE*4] = dcval;
  192.       wsptr[DCTSIZE*5] = dcval;
  193.       wsptr[DCTSIZE*6] = dcval;
  194.       wsptr[DCTSIZE*7] = dcval;
  195.       
  196.       inptr++;            /* advance pointers to next column */
  197.       quantptr++;
  198.       wsptr++;
  199.       continue;
  200.     }
  201.     
  202.     /* Even part: reverse the even part of the forward DCT. */
  203.     /* The rotator is sqrt(2)*c(-6). */
  204.     
  205.     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  206.     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  207.     
  208.     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
  209.     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
  210.     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
  211.     
  212.     z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  213.     z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  214.  
  215.     tmp0 = (z2 + z3) << CONST_BITS;
  216.     tmp1 = (z2 - z3) << CONST_BITS;
  217.     
  218.     tmp10 = tmp0 + tmp3;
  219.     tmp13 = tmp0 - tmp3;
  220.     tmp11 = tmp1 + tmp2;
  221.     tmp12 = tmp1 - tmp2;
  222.     
  223.     /* Odd part per figure 8; the matrix is unitary and hence its
  224.      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
  225.      */
  226.     
  227.     tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  228.     tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  229.     tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  230.     tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  231.     
  232.     z1 = tmp0 + tmp3;
  233.     z2 = tmp1 + tmp2;
  234.     z3 = tmp0 + tmp2;
  235.     z4 = tmp1 + tmp3;
  236.     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  237.     
  238.     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  239.     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  240.     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  241.     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  242.     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  243.     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  244.     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  245.     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  246.     
  247.     z3 += z5;
  248.     z4 += z5;
  249.     
  250.     tmp0 += z1 + z3;
  251.     tmp1 += z2 + z4;
  252.     tmp2 += z2 + z3;
  253.     tmp3 += z1 + z4;
  254.     
  255.     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  256.     
  257.     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
  258.     wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
  259.     wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
  260.     wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
  261.     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
  262.     wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
  263.     wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
  264.     wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
  265.     
  266.     inptr++;            /* advance pointers to next column */
  267.     quantptr++;
  268.     wsptr++;
  269.   }
  270.   
  271.   /* Pass 2: process rows from work array, store into output array. */
  272.   /* Note that we must descale the results by a factor of 8 == 2**3, */
  273.   /* and also undo the PASS1_BITS scaling. */
  274.  
  275.   wsptr = workspace;
  276.   for (ctr = 0; ctr < DCTSIZE; ctr++) {
  277.     outptr = output_buf[ctr] + output_col;
  278.     /* Rows of zeroes can be exploited in the same way as we did with columns.
  279.      * However, the column calculation has created many nonzero AC terms, so
  280.      * the simplification applies less often (typically 5% to 10% of the time).
  281.      * On machines with very fast multiplication, it's possible that the
  282.      * test takes more time than it's worth.  In that case this section
  283.      * may be commented out.
  284.      */
  285.     
  286. #ifndef NO_ZERO_ROW_TEST
  287.     if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
  288.      wsptr[7]) == 0) {
  289.       /* AC terms all zero */
  290.       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
  291.                   & RANGE_MASK];
  292.       
  293.       outptr[0] = dcval;
  294.       outptr[1] = dcval;
  295.       outptr[2] = dcval;
  296.       outptr[3] = dcval;
  297.       outptr[4] = dcval;
  298.       outptr[5] = dcval;
  299.       outptr[6] = dcval;
  300.       outptr[7] = dcval;
  301.  
  302.       wsptr += DCTSIZE;        /* advance pointer to next row */
  303.       continue;
  304.     }
  305. #endif
  306.     
  307.     /* Even part: reverse the even part of the forward DCT. */
  308.     /* The rotator is sqrt(2)*c(-6). */
  309.     
  310.     z2 = (INT32) wsptr[2];
  311.     z3 = (INT32) wsptr[6];
  312.     
  313.     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
  314.     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
  315.     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
  316.     
  317.     tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
  318.     tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
  319.     
  320.     tmp10 = tmp0 + tmp3;
  321.     tmp13 = tmp0 - tmp3;
  322.     tmp11 = tmp1 + tmp2;
  323.     tmp12 = tmp1 - tmp2;
  324.     
  325.     /* Odd part per figure 8; the matrix is unitary and hence its
  326.      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
  327.      */
  328.     
  329.     tmp0 = (INT32) wsptr[7];
  330.     tmp1 = (INT32) wsptr[5];
  331.     tmp2 = (INT32) wsptr[3];
  332.     tmp3 = (INT32) wsptr[1];
  333.     
  334.     z1 = tmp0 + tmp3;
  335.     z2 = tmp1 + tmp2;
  336.     z3 = tmp0 + tmp2;
  337.     z4 = tmp1 + tmp3;
  338.     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  339.     
  340.     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  341.     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  342.     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  343.     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  344.     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  345.     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  346.     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  347.     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  348.     
  349.     z3 += z5;
  350.     z4 += z5;
  351.     
  352.     tmp0 += z1 + z3;
  353.     tmp1 += z2 + z4;
  354.     tmp2 += z2 + z3;
  355.     tmp3 += z1 + z4;
  356.     
  357.     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  358.     
  359.     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
  360.                       CONST_BITS+PASS1_BITS+3)
  361.                 & RANGE_MASK];
  362.     outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
  363.                       CONST_BITS+PASS1_BITS+3)
  364.                 & RANGE_MASK];
  365.     outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
  366.                       CONST_BITS+PASS1_BITS+3)
  367.                 & RANGE_MASK];
  368.     outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
  369.                       CONST_BITS+PASS1_BITS+3)
  370.                 & RANGE_MASK];
  371.     outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
  372.                       CONST_BITS+PASS1_BITS+3)
  373.                 & RANGE_MASK];
  374.     outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
  375.                       CONST_BITS+PASS1_BITS+3)
  376.                 & RANGE_MASK];
  377.     outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
  378.                       CONST_BITS+PASS1_BITS+3)
  379.                 & RANGE_MASK];
  380.     outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
  381.                       CONST_BITS+PASS1_BITS+3)
  382.                 & RANGE_MASK];
  383.     
  384.     wsptr += DCTSIZE;        /* advance pointer to next row */
  385.   }
  386. }
  387.  
  388. #endif /* DCT_ISLOW_SUPPORTED */
  389.